

Clinical Conversations with Chantel Yates:

Wednesday 14 May 2025 | 12PM AEST

1

Meet your speakers

Dr Brad Leech Nutritionist and Lead Clinical Educator

Chantel YatesNaturopath and Herbalist

Add your questions in the chat to have them answered

Disclaimers

- The information provided in this webinar is for the use of qualified healthcare professionals.
- The information contained in this webinar is in no way to be taken as prescriptive or to replace a healthcare professional's duty of care and personalised care practices.
- The clinical opinions and patient case studies shared by presenters are solely those of the individual presenters and do not necessarily represent the view of Co-Biome.

MetaXplore^{**}

3

Learning Objectives

- 1. Describe the defining features of FGIDs and current diagnostic criteria, including the Rome IV framework.
- 2. Identify common microbiome patterns associated with IBS and visceral hypersensitivity, including relevant MetaXplore markers.
- 3. Evaluate evidence-informed microbiome restoration strategies using herbal, nutritional and naturopathic interventions.
- 4. Apply clinical approaches to transitioning patients off long-term restrictive diets with safety and care.
- 5. Integrate microbiome testing into patient-centred care to improve symptom resolution and treatment satisfaction in FGIDs.

Overview: Using Gut Microbiome Testing in FGID

IBS and "Histamine Issues" 55-year-old female

Visceral Hypersensitivity 33-year-old male

MetaXplore*

_

What is FGID?

Functional Gastrointestinal Disorders

- Gut-brain axis dysregulation (DGBIs)
- Visceral hypersensitivity
- Low-grade immune activation
- Altered microbiota composition
- Post-infectious changes following food poisoning or gut infections (TD)

What is FGID?

Functional Gastrointestinal Disorders

- Effects 40% globally: IBS, FD, and functional constipation the most prevalent (Singh et al., 2022)
- 40% GIT diagnosis in Australia (Mahadeva, 2023)
- IBS is the most common FGID, making up 12% of all primary care visits and 25–50% of gastroenterology clinic visits (Huang et al., 2023)
- IBS is 1.7 times more common in women/AFAB's (IBS-C) (Lovell & Ford, 2012)
- Functional Dyspepsia (FD) overlaps with IBS in up to 25–30% of cases (Singh et al., 2022)
- SIBO is present in up to 78% of IBS patients (IBS-D and M)

MetaXplore*

7

Diagnosis?

Rome IV Criteria - IBS-C, IBS-D, IBS-M and IBS-U

Recurrent abdominal pain on average at least 1 day per week in the last 3 months, associated with two or more of the following:

- Related to defecation
- Associated with a change in stool frequency
- Associated with a change in stool form (appearance)

Criteria must be fulfilled for the last 3 months with symptom onset at least 6 months prior to diagnosis (Lacy et al., 2016)

MetaXplore[®]

Role of Gut Microbiome Testing in FGID

- Reduced diversity
- Low levels of SCFA-producing microbes (e.g. butyrate)
- Overgrowth of pathobionts (e.g. Proteobacteria, E. coli, C. diff, Klebsiella, Enterobacteriaceae) (Li et al., 2024, Kadhim et al., 2023)
- Elevated Methanogens (IBS-C) and H2S producers (IBS-D)
- Elevated oral species colonising the colon (Li et al., 2024)

MetaXplore[®]

Patterns of microbiome imbalances in FGID Key microbiome markers to assess in IBS cases

30 + Methanogens IBS-C, Bloating, Constipation, Motility (Methanobrevibacter spp., Methanosphaera) Intestinal barrier function, inflammation, Low butyrate producing species visceral sensitivity, motility IBS-D: pancreatic insufficiency, dysbiosis, Elevated hydrogen sulphide producing species malabsorption 410 + Oral species (e.g., Streptococcus, Rothia, Oral bacteria in the gut → oral-gut translocation → gut microbiome imbalance

Veillonella, Fusobacterium)

Lower gut microbiome diversity

Restrictive diets (low-FODMAP)

MetaXplore*

11

Patterns of microbiome imbalances in FGID

Key microbiome markers to assess in Visceral Hypersensitivity

Slows motility → luminal distention → mechanical 30 + Methanogens hypersensitivity (Pimentel et al., 2012) (Methanobrevibacter spp., Methanosphaera)

Impaired barrier integrity → ↑ mucosal inflammation Low butyrate producing species → sensory nerve activation (Geirnaert et al., 2017)

Histamine producing species (Klebsiella, Microbial histamine → mast cell activation → H1/H4 Morganella, Enterobacter) receptor-mediated pain signalling (De Palma et al., 2022)

Translocation → immune activation → mucosal 410 + Oral species (e.g., Streptococcus, Rothia, neuroinflammation (Lee et al., 2020) Veillonella, Fusobacterium)

Restrictive diet. Loss of resilience/stability → ↑ Lower gut microbiome diversity immune reactivity and permeability \rightarrow VH

susceptibility (Sabo & Dumitrascu, 2021)

MetaXplore^{*}

CASE 1: Irritable Bowel Syndrome – Constipation Dominant (IBS-C)

MetaXplore **

13

Diagnosed conditions: IBS-C, SIBO (CH4), Histamine Intolerance.

Presenting symptoms: Abdominal pain, constipation, bloating, "food intolerance", with <u>brain-fog</u> and <u>fatigue</u>, anxiety/stress.

Case history: 2018 episode of food poisoning: onset abdominal pain, bloating (progressively worse), constipation (always).

 $\mbox{\bf Diet:}$ Since 2018 - Low FODMAP (DF & GF), SIBO Bi-phasic (stuck on phase 1-2), Low-Histamine.

Patient Goals

Short-term

Reduce pain and bloating

Medium-term

• Energy and brain-fog

Long-term

- Eat normally again if possible
- "I'd love to be able to go out to dinner with my husband again"

Microba Microbiome Test Results - July 2024

Number of species identified	155 (low-normal)
Microbial Diversity	3.67 (low-normal)
Butyrate producing microbes	15.38% (low-normal)
Proteobacteria	4.65% (high-normal)
Desulfobacterota	0.02%
*Hexa-LPS	4.25% (High)
*Methane	2.10% (High)
Oxalate consumption	1.03% (ok)
Propionate	18.92% (High)
Trimethylamine producing microbes	9.31% (Ok)
H2S (Bilophila, Desulfovibrio)	BDL
*Escherichia	4.24% (v High)
Mucin degradation	938.23 (High)
IPA	0.08 (Low)
Beta-glucuronidase	26.71%
MetaXplore™	

5 most abundant species

- 1. Akkermansia muciniphila (12.50%)
- 2. Prevotella bivia (7.27%)
- 3. Bacteroides_B dori (5.30%)
- 4. E.coli_D (4.24%)
- 5. Streptococcus oralis (2.51%)

Note: Oral species = 10

17

Assess: Outcome of Testing - Key Issues

Red flags

. N/A

Gut terrain

- · Intestinal Permeability
 - high Hexa-LPS
 - low IPA and butyrate

Dysbiosis

- £. coli, Akkermansia, Methanobrevibacter, oral species
- Butyrate producers, IPA, Acetate, Diversity, Species richness

Apply: Patient Management Plan

Dietary prescription

- Low and slow
- Increase RS-III
- Flax seeds (ground)2 Tbsp daily
- Chia pudding

Specific pre-/probiotic prescription

• Saccharomyces cerevisiae var boulardii Biocodex

alternate with

• L.reuteri DSM17938

Personalised supplement recommendations

- L-glutamine 5g bd
- Curcumin 500mg bd
- EGCg 400mg bd
- PHGG 6g/d
- Herbal:
 - SaffronPomegranate
 - Oregano
 - Licorice

Patient education

- Long term goal high fiber Mediterranean style diet for microbiome restoration
- Nerva app
- Mindfulness/self care
- Workplace stress
- Hormone influence
- Exercise

Timeframe: 12 weeks

MetaXplore*

19

"I'm doing magic poo's! I think it's the flax and chia seeds."

"I went out to dinner with my husband for the first time in ages. I'm trying fermented foods now!"

"Still a little bloated but SO much better, I can handle a bit of bloating."

MetaXplore^{**}

MetaXplore Results - Top 5 Species All Species Phylum ↑↓ Prevalence $\uparrow\downarrow$ Distance from Average ↑↓ Bacteroides_B dorei Bacteroidota 5.70% +1.66 Common Bacteroides cellulosilyticus 5.65% 4.29% +0.45 Fusicatenibacter saccharivorans Firmicutes_A Very common Blautia_A sp900066165 Firmicutes_A Very common 3.85% +1.88 GCA-900066995 sp900291955 Firmicutes_A Less common 3.75% +0.90 MetaXplore*

MetaXplore Results - Pathobiont All Species Relative Abundance % ↓ Species ↑↓ Distance from Average ↑↓ Phylum $\uparrow\downarrow$ Prevalence ↑↓ 5.70% +1.66 Bacteroides_B dorei Bacteroidota Common Bacteroides cellulosilyticus 5.65% Bacteroidota +0.58 Alistipes putredinis Common Bilophila wadsworthia Desulfobacterota_A Common 0.24% +1.14 MetaXplore*

Areas improved:		
Proteobacteria decreased	4.65% → 1.77%	Indicating reduced inflammation risk
E.coli no longer detected	4.24% → ND	Linked to lower hexa-LPS production & intestinal barrier repair, lower systemic inflammation (brain fog, fatigue, food reactions)
Butyrate increased	15.38% → 18.03%	Better short-chain fatty acid production, supporting gut healing & energy for colon cells
Total species diversity increased	155 → 180	Increased resilience
Methane production reduced	2.10% → 0.83%	Improved motility, reduced bloating and constipation as well as histamine reactions
Hexa-LPS reduced	4.25% →0.00%	Reduced overall inflammation
Areas needing attention:		
Secretory IgA diminished	1241 → <149	Could indicate delay in sample, herbal antimicrobials(?)
Beta-glucuronidase increased	26.27% \Rightarrow 31.17%	Linked to oestrogen recycling
Bilophila wadsworthia increased from ND	ND → 0.24%	Can contribute to IP and offensive smelling flatulence

Apply: Patient Management Plan Ongoing

Dietary prescription

- · Expanding to a highfiber diet
- Continue flax, chia, berries
- Boost Brassicas

Specific pre-/probiotic prescription

- L. reuteri
- HMO's 2'fl

Personalised supplement recommendations

- Herb Mix
 - Saffron
 - Pomegranate Black Cohosh

 - Ginger

Patient education

- Slowly expand diet:
 - Fructose first
 - Oligosaccharides
 - Histamine
- Continue NS support:
 - Mindfulness
 - Time in nature
 - Yoga

Timeframe: 12 weeks

MetaXplore*

31

Case 1: Clinical Reflections

The patient was hyper-reactive, we had to tweak and change the treatment a lot

Dietary expansion is slow going, the patient was terrified of food. Too fast and she would stop everything, and progress would back-slide.

NS support, early childhood trauma, chronic stress need to be addressed (refer)

Microbiome restoration and visceral hypersensitivity takes time!

MetaXplore[®]

Age/Gender: 33yo AMAB

Diagnosed conditions: PI-IBS

Presenting symptoms: Abdo pain 8/10 (LRQ/LMQ) "raw feeling", Abdo discomfort (w legumes, alcohol, high fibre), BM frequency/urgency (2–5/day), variable Bristol 2–6, <u>offensive gas</u>.

• Worse for stress/anxiety, improved with flatus/BM

Case history:

- Chronic IBS symptoms post-Giardia (15 yrs ago)
- Recurrent "raw gut"
- Prior Hx: duodenal ulcers (teen), Blasto dx (3 yrs ago)
- Dig deeper, hx early childhood trauma and chronic stress
- FHx: diverticulitis, bowel cancer, GERD

Diet: low dairy, low gluten, SAD, avoiding alcohol

MetaXplore

35

Medication/supplements:

- · Nil currently
- Hx ABX: Metronidazole (Giardia), Flagyl and Triple Therapy (Blasto)

Patient Goals

Short-term

 Reduce pain and urgency

Medium-term

- Regulate BM
- Minimal pain (can we get rid of it completely?)
- · Digestive comfort

Long-term

- Fix gut so he can eat normally and enjoy occasional beer and wine
- High-fibre diet

MetaXplore*

Assess: Outcome of Testing Red flags Gut terrain Dysbiosis · Nil Elevated sIgA and H2S, Low diversity and species low-normal IPA, butyrate richness Higher than ideal bacteroides Lower than ideal butyrate . E. coli - 0.23% · Bilophila 0.22% Klebsiella pneumoniae 0.05% • 5 x oral species! **MetaXplore**

Apply: Patient management plan

Dietary prescription

- Slowly ease into highfiber whole foods diet
- Increase cruciferous slowly (broccoli stalks and sprouts)

Specific pre-/ probiotics/ herbal prescription

- L. plantarum 299v
- Custom Prebiotic:
 - PHGG
 - HMO
 - Acacia fiberPink pitaya
 - low & slow approach, start with 1 tsp/day & build up to 1 TBSP

Personalised supplement recommendations

- Multivitamin
- Vit D 5000iu
- Zinc carnosine
- L-glutamine
- Pomegranate husk
- Gynostemma/green tea
- 2-3 cups daily

Patient education

- Macros/exercise
 - Get the right balance of protein, fibre, carbs & fats
 - Over exercise caution
 - Reduce sat fat

Timeframe: 12 weeks

MetaXplore*

41

"I feel better than I've ever felt in my life."

"I don't remember the last time I have been pain free for this long!"

"Still getting occasional smelly farts."

-

↑↓	Genus ↑↓	Phylum ↑↓	Prevalence ↑↓	Relative Abundance % ↓	Distance from Average ↑
	Blautia_A	Firmicutes_A	Very common	10.08%	+0.93
	Faecalibacterium	Firmicutes_A	Very common	8.42%	+0.55
	Fusicatenibacter	Firmicutes_A	Very common	8.38%	+1.10
	Bacteroides_B	Bacteroidota	Very common	7.29%	+1.13
	Anaerostipes	Firmicutes_A	Very common	6.24%	+1.82

MetaXplore Results - Pathobiont All Species Relative Abundance % ↓ ↑↓ Species ↑↓ Distance from Average $\uparrow\downarrow$ Phylum ↑↓ Prevalence $\uparrow\downarrow$ 6.67% Bacteroides_B vulgatus Bacteroidota +1.32 Common Bacteroides uniformis 2.84% +1.07 Alistipes putredinis Bacteroidota 1.04% -0.08 Common Dorea longicatena_B Firmicutes_A Common +0.89 Bacteroides_B sartorii Bacteroidota Rare 0.62% MetaXplore*

55

MetaXplore Results - Oral species All Species ↑↓ Species ↑↓ Phylum ↑↓ Prevalence ↑↓ Relative Abundance ¼ ↓ ⑤ Streptococcus salivarius Firmicutes Common 0.19% ○ Prevotella bivia Bacteroidota Less common 0.03%

Key Patterns of Change (*date* → *date***)**

Areas improved:

Pathobionts decreased	0.27% → BDL	Key Shift: E.coli 0.23% abundance to now undetectable —a great improvement!
Bacteroides spp. improvement	25.22% → 12.46%	Within the ideal range
Butyrate production	14.97% → 24.12%	I attribute this shift to the patients radical sx improvement

Areas for further improvement:

H2S production	12.25% → 15.54%	Now high! Interestingly though sulphur smell has reduced (but still present)
Microbial diversity	134 species → 140 species	Evenness: The average evenness of microbes has improved Now: 3.85— still 3 species above 5% relative abundance, heading in the right direction but still needs improvement (aim for 200+)

MetaXplore*

57

Apply: Patient Management Plan Ongoing

Dietary prescription

- Increase fibre
 - Legumes, grains, fruits and vegetables
- Polyphenols daily

Specific pre-/probiotics/herbal prescription

 HMO's - continue for another 6-12 months for GIT healing

Personalised supplement recommendations

- EGCG
- Multivitamin/Fertility nutrients
- Gynostemma tea as needed for smelly farts

Patient education

- Excellent NS work continue daily NS regulation practices (meditation, yoga, exercise)
- Pre-conception diet and lifestyle recommendations
- Re-test microbiome 6-12 monthly with family hx bowel cancer

Timeframe: 6 months

Case 2: Clinical Reflections

Go slow on high fiber diet – major bloating and stool urgency!

Anxiety, especially food anxiety was a major issue, patient needed a lot of hand-holding

H2S picture is curious, interested to see if it reduces with the reduction in truffle in the diet

Keep the individual in the frame - the patient feels great! Don't overly prescribe based on test results

MetaXplore*

59

Transitioning from a Restrictive Diet

Steps & considerations when patients have been on long-term restrictive diets

- √ Work on underlying inflammation/immune activation first
- √ Reduce VH (butyrate)
- ✓ Low and slow (sprinkle and sip)
- ✓ Start with fructose containing foods if low FODMAP (eat and apple)
- ✓ Slowly reintroduce oligosaccharides (lentils, mung, adzuki, firm tofu, black turtle beans first)
- ✓ Onion and garlic, kidney beans, chickpeas later
- √ Give a realistic timeframe

Key Highlights

- FGID affects 40% globally with IBS being the most common disorder.
- Gut microbiome testing can provide insights into diversity, SCFA production, pathobionts, methanogens, hydrogen sulphide production and oral species that may be contributing to FGID.
- Increased methanogens in the microbiome are often present in IBS-C, functional constipation and bloating.
- Elevated hydrogen sulphide producing species may be present in IBS-D and dysbiosis.
- · Low butyrate may be seen in visceral hypersensitivity.
- Increased oral species can be indicative of dysbiosis.
- · Long-term restrictive diets can lead to reduced microbial diversity.

MetaXplore **

61

MetaXplore: Unlock Health from Within

METAXPLORE

Functional Gut Microbiome Profile²

METAXPLORE GI

Functional Gut Microbiome Profile² Gastrointestinal Health Markers¹

METAXPLORE GI PLUS

Functional Gut Microbiome Profile² Gastrointestinal Health Markers¹ Targeted Pathogen Panel

Learn more at ${\it co-biome.com/testing}$

Visit **Co-Education** for additional resources You can access this via your Practitioner Portal: practitioner.co-biome.com/login

Additional resources:

- Prebiotic Guide
- Low FODMAP Prebiotic Guide
- Dietary Impacts on the Gut Microbiome Guide
- Pathogen and Pathobiont Management Guide
- Interpretation Guide
- MetaXplore Range Report Interpretation Checklist
- Patient Referral Letter Template
- Testing Your Microbiome Patient Brochure
- Patient Handouts Ellagic acid; Arabinoxylan; Beta-glucan; Inulin; FOS; GOS; Pectin; Resistant starch

Register as a Co-Biome Clinician today for microbiome educational resources at your fingertips!

References

- Li J, Ghosh TS, Arendt EK, Shanahan F, O'Toole PW. Cross-Cohort Gut Microbiome Signatures of Irritable Bowel Syndrome Presentation and Treatment. Adv Sci. 2024:e2308313.
- Kadhim NJ, Ogaili R, Abbas A. Intestinal Bacterial Microbiota In Irritable Bowel Syndrome. Acad Int J Pure Sci. 2023.
- Lacy BE, Mearin F, Chang L, Chev WD, Lembo AJ, Simren M, et al. Bowel disorders, Gastroenterology, 2016;150(6):1393-407.e5. doi:10.1053/j.gastro.2016.02.031
- Singh P, Staller K, Barshop K, Dai E, Rezaie A, Nee J, et al. Patients with Irritable Bowel Syndrome Are at Increased Risk of Developing Functional Dyspepsia: A Nationwide Population-Based Study. Am J Gastroenterol. 2022;117(4):610–9. doi:10.14309/ajg.0000000000001626
- Mahadeva S. The burden of functional gastrointestinal disorders in the Asia-Pacific region: A narrative review. JGH Open. 2023;7(1):5–12. doi:10.1002/jgh3.12835 Huang IH, Hsu YC, Liao KF. Irritable bowel syndrome and risk of colorectal cancer: A nationwide population-
- based study. Int J Colorectal Dis. 2023;38(3):1–7. doi:10.1007/s00384-022-04203-4
- Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10(7):712–721.e4. doi:10.1016/j.cgh.2012.02.029
- Pimentel M, Mayer AG, Park S, Chow EJ, Hasan A, Kong Y, Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig Dis Sci. 2012;58(2):498–503. doi:10.1007/s10620-012-2371-5
- Li J, Ghosh TS, Arendt EK, Shanahan F, O'Toole PW. Cross-Cohort Gut Microbiome Signatures of Irritable Bowel Syndrome Presentation and Treatment. Adv Sci (Weinh). 2024:e2308313. doi:10.1002/advs.202308313
- 10. Kadhim NJ, Ogaili R, Abbas A. Intestinal Bacterial Microbiota in Irritable Bowel Syndrome. Acad Int J Pure Sci. 2023;3(1):1-10.
- 11. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146(1):67-75. doi:10.1053/j.gastro.2013.09.046

65

References

- 12. Wöhrl S, Hemmer W, Focke M, Rappersberger K, Jarisch R. Histamine intolerance-like symptoms in healthy volunteers after oral provocation with liquid histamine. Allergy Asthma Proc. 2004;25(5):305-11. doi:10.2500/1088541041950385
- 13. Rao RK, Samak G. Role of glutamine in protection of intestinal epithelial tight junctions. J Epithel Biol Pharmacol. 2012;5(Suppl 1-M7):47-54. doi:10.2174/1875044301205010047
- Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome. BMJ. 2017;356;j561. doi:10.1136/bmj.j561
 Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35-56. doi:10.1038/s41575-018-0061-2
- 16. Ghoshal UC, Shukla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver. 2017;11(2):196–208. doi:10.5009/gnl15504
- 17. Didari T, Mozaffari S, Nikfar S, Abdollahi M. Effectiveness of probiotics in irritable bowel syndrome: updated systematic review with meta-analysis. World J Gastroenterol. 2015;21(10):3072-84. doi:10.3748/wjg.v21.i10.3072
- 18. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-45. doi:10.1016/j.cell.2016.05.041
- 19. Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol. 2008;103(3):765-74. doi:10.1111/j.1572-0241.2007.01722.x