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the diet and microbiome



Diets are distinct patterns of food consumption

Food group Mediterranean Ketogenic Paleo Omnivore Vegan Vegetarian

Meats

Fish

Eggs

Dairy

Legumes

Fruits Restricted (non-starchy)

Vegetables (non-root)

Grains

Nuts

Diet has a significant impact on the 
composition of the gut microbiome.

Diet is the biggest modifiable factor impacting microbiome composition and function. The literature, 
along with MetaXplore data analysis, indicates the more extreme the diet, the more impact it has on 
the microbiome. More restrictive diets such as vegan, and ketogenic, have the most impact on the 
abundance of species within the microbiome. Plant-rich diets that include a variety of fruits, vegetables, 
legumes, grains, nuts and seeds are associated with a healthier microbiome. Understanding the 
interactions between the diet and microbiome can help optimise patient health outcomes. 



Diet style and the gut microbiome

Testing reveals dietary influence  
on the microbiome

Testing your patients with the Co-BiomeTM MetaXploreTM range 

can reveal your patients potential for microbial marker production 

or consumption, allowing you to make personalised dietary 

recommendations for targeted microbiome interventions.
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“The more extreme the diet the more 
impact on the microbiome”



Microbiome features

Microbiome 
feature 

Health association Diet association 

Microbial species

Health and disease associated species  

Prevotella 
copri  

Commonly found in non-western populations while in 
Western populations it is found in fewer than 30% of 
individuals1. It is linked to both positive and negative 
health outcomes which may reflect the impact of diet 
and lifestyle on this species.  
P. copri can use both fibre and protein:  
- when it degrades fibre, it produces beneficial SFCAs 
- when it degrades protein, it produces BCAAs 

Associated with vegan diets2. One 
study suggested a Mediterranean diet 
may provide a greater cardioprotective 
benefit if the microbiome does not 
contain P. copri. 3.  

Alistipes 
putredinis  

Studies have observed higher levels in patients with 
colon cancer4. However, other studies associated a 
low abundance of A. putredinis with chronic fatigue 
syndrome5, irritable bowel syndrome6,7 and liver disease8,9.

A vegetarian diet can reduce  
A. putredinis levels10. 

Disease-associated species  

Bilophila 
wadsworthia  

A common inhabitant of the human gut but can 
become problematic at high levels. Higher levels of 
B. wadsworthia have been observed in patients with 
colon cancer4 and insulin resistance11.  

Increased in omnivore compared to 
vegan and vegetarian diets2. Early 
research suggests high fat, low fibre diets 
may promote B. wadsworthia,12,13,14,15.  

Faecalicatena 
torques  

Previously called Ruminococcus torques, this is a 
common inhabitant of the human gut. Higher levels 
of F. torques have been observed in patients with 
obesity16, insulin resistance11,17, gut inflammation18 and 
inflammatory bowel disease19.

Decreased in vegan, vegetarian2 and 
Mediterranean20 diets and increased 
in ketogenic diets21. Increased intake 
of plant protein and regular fruit 
consumption have been associated 
with reduced F. torques18.

Negativibacillus 
spp.  

N. massiliensis and N. sp000435195 are less common 
members of the human gut microbiome. They are 
both trimethylamine producing microbes while N. 
sp000435195 can also produce hydrogen sulphide.  

Both N. massiliensis and N. sp000435195 
are increased in ketogenic and reduced 
in vegetarian and vegan diets. N. 
sp000435195 was also significantly 
increased in paleo diets21.

Hungatella_A 
MIC8772 

A common member of the human gut microbiome.  
H. MIC8772 is a hydrogen sulphide and BCAA 
producing microbe.  

Increased in paleo, ketogenic and low 
carbohydrate diets21.

Health-associated species  

Bifidobacterium 
spp. 

Bifidobacterium species are widely used in probiotic 
supplements, however, following the cessation of 
breastfeeding they are not essential for a healthy gut 
microbiome. Approximately, 1 in 5 samples within the 
MetaXplore healthy cohort contain no detectable levels 
of Bifidobacterium.

Reduced in vegan22, low carbohydrate18, 
low FODMAP23, ketogenic24,25 and 
paleo26 diets.

Agathobacter 
rectale  

Previously called Eubacterium rectale, this is a common 
inhabitant of the human gut. Low levels of A. rectale 
have been reported in type-1 diabetes mellitus27, 
coronary heart disease28, liver disease8,9, chronic fatigue 
syndrome29 and increased COVID-19 severity30.

Increased in Mediterranean20 and 
decreased in ketogenic diets24,25.  
Diets rich in resistant starch have been 
shown to increase the abundance of 
A. rectale in obese men31.  Increased 
consumption of rice has been linked to 
increased levels of A. rectale18. 

Faecalibacterium 
praunitzii  

MetaXplore detects 10 different F. prausnitzii species 
with D and G being the most common. Low levels have 
been linked to obesity15, chronic fatigue syndrome5,28, 
liver disease9, inflammatory bowel disease7,19 and 
irritable bowel syndrome7.

Increased in Mediterranean diet3,20. 
Studies have shown F. prausnitzii can 
grow on FOS, inulin32 and pectin33 while 
red wine consumption has also been 
linked to increased F. prausnitzii18. 

Streptococcus 
thermophilus  

The most widely used lactate producing bacteria for 
fermenting cheese and yoghurt.

Decreased in Mediterranean20, vegan34, 
and ketogenic diets21 and increased 
in vegetarian8 diets. Increased levels 
associated with dairy intake and 
frequency of yoghurt consumption18.



Microbiome 
feature 

Health association Diet association 

Microbial markers

Detrimental microbial markers  

Trimethylamine 
producing 
microbes 

Trimethylamine is produced by gut microbes 
from the breakdown of choline and carnitine. It is 
transported to the liver where it is converted to the 
compound trimethylamine-n-oxide (TMAO). Higher 
levels of plasma TMAO are associated with systemic 
inflammation, especially in patients with type 2 
diabetes and cardiovascular disease35,36,37.

Animal-rich diets (ketogenic, high protein) 
have higher trimethylamine producing 
microbes compared to plant-rich diets 
(Mediterranean, vegan, vegetarian)21. When 
aiming to reduce plasma TMAO, limiting 
dietary carnitine may be effective. Rich dietary 
sources of carnitine include kangaroo, beef, 
lamb, pork, duck, and Goat’s cheese38,39. 

BCAA 
producing 
microbes  

BCAAs, which include valine, leucine and isoleucine, are 
essential amino acids. Although BCAAs are derived from 
the diet, they are also produced by the gut microbiome 
which can contribute to elevated levels of plasma BCAAs. 
High levels of plasma BCAAs may be associated with 
systemic inflammation40 while high levels of BCAA producing 
microbes may be associated with insulin resistance17. 

A vegetarian diet may reduce BCAA 
producing microbes41 while a 
Mediterranean diet may reduce plasma 
BCAAs20,42.

Hydrogen 
sulphide 
producing 
microbes  

The gas hydrogen sulphide is produced by gut 
microbes when they break down sulphur-containing 
compounds. This gas is responsible for the rotten egg 
smell of flatulence. Optimal hydrogen sulphide levels 
may be associated with intestinal barrier integrity43,44,45.

High protein and ketogenic diets are 
associated with increased hydrogen 
sulphide producing microbes24. To reduce 
hydrogen sulphide production, limiting 
or avoiding dietary and supplemental 
cysteine may be effective46,47,48. Rich 
dietary sources of sulphur-amino acids 
include cod, chicken breast, eggs, ham 
and minced beef49.

Beneficial microbial markers  

Oxalate 
consuming 
microbes  

Oxalate is a key component of calcium oxalate kidney 
stones. Decreased oxalate consuming microbes may 
be associated with increased urinary oxalate excretion 
and may be reduced in patients with recurrent kidney 
stones50,51. 

Oxalate consuming microbes increased 
in vegetarian and vegan diets21.

Lactate 
producing 
microbes  

Lactate is an organic compound produced through 
the microbial fermentation of carbohydrates. There is 
uncertainty around the role of lactate producing microbes 
in human health due to an emerging evidence base.  

Lactate producing microbes reduced in 
ketogenic and paleo diets21.
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